電力用光通信ネットワークの実態と動向

目 次

委員会組織			3-	5-1	調査結果
第1章 概説		3-	5-2	信頼度評価	
1-1 研究の	1-1 研究の目的と経緯				保守・運用評価
1-2 各種気	定義				
1-2-1 有	开究範囲		第4章	伝	送機器の技術動向
1-2-2 月	用語定義		4-1	伝送	性機器の技術変遷
1-3 研究韓	報告の概要		4-	1-1	通信方式の変化
1-3-1	【第2章】	電力用光通信ネットワー	4-	1-2	通信サービスの変遷
		クの変遷	4-	1-3	通信事業者と電力会社の違い
1-3-2	【第3章】	電力用光通信ネットワー	4-2	PDH	装置, SDH 装置の技術動向
		クの構成機器	4-3	2-1	PDH 装置の技術動向
1-3-3	【第4章】	伝送機器の技術動向	4-2	2-2	SDH 装置の技術動向
1-3-4	【第5章】	光ケーブルの設備実態	4-3	WDM	装置の技術動向
1-3-5	【第6章】	光ケーブルの技術動向	4-3	3-1	高速・大容量化のトレンド
1-3-6	【第7章】	今後の電力用光通信ネッ	4-3	3-2	ネットワークの柔軟性
		トワーク構成の考え方	4-4	IP标	機器の技術動向
1-3-7	【第8章】	今後の課題と将来に向け	4-	4-1	IP 機器の開発方向性
		た取り組み	4-	4-2	高密度化,広帯域化
			4-	4-3	レイヤ統合技術
第2章 電力	用光通信	ネットワークの変遷	4-	4-4	SDN
2-1 電力月	用光通信ネ	ットワーク構成の考え方	4-5 海外技術動向		
2-1-1	電力用光通	信ネットワーク階層構成	4-	5-1	発変電所設備のデジタル化
2-1-2	電力用光通	信ネットワーク構成要素	4-	5-2	デジタル変電所のためのネットワー
2-1-3	電力会社間	連係ネットワーク			ク技術
			4-	5-3	デジタル変電所の海外事例
第3章 電力	用光通信	ネットワークの構成機器			
3-1 調査内容			第5章	光	ケーブルの設備実態
3−1−1 🗒	周査機器定	義	5-1	電力	カ用光ケーブルの変遷
3-1-2	調査内容		5-2	設備	i 実態
3-2 機器構	構成の変化	と導入機器の変遷	5-2	2-1	調査内容
3-2-1 核	幾器構成の	変化	5-2	2-2	調査結果
	尊入機器の				章実績
3-3 運用第			5-	3-1	架空光ケーブルの故障
3-3-1 杉	幾器全体運	用実態	5-	3-2	地中光ケーブルの故障
3-3-2 P	3-3-2 PDH 装置運用実態			3-3	OPGW の故障
3-3-3 S	DH 装置運	用実態	5-4	支障	跨移 設
3-3-4 W	DM 装置運	用実態	5-	4-1	調査結果
3-4 故障第		5-	4-2	分析結果	
3-4-1	周査結果		5-5	信頼	頁度評価
3-4-2 9	分析結果		5-	5-1	調査結果
3-5 機器の	の信頼度		5-	5-2	信頼度評価

第6章 光ケーブルの技術動向

6-1 光ファイバ心線

6-1-1 電協研第 48 巻以降取り入れられた 光ファイバ

6-1-2 次世代の光ファイバ

6-2 光ケーブル

6-2-1 次世代型光ケーブル

6-2-2 自己支持型ケーブル

6-3 OPGW

6-3-1 概要

6-3-2 耐雷型 OPGW

6-3-3 耐腐食型 OPGW

6-4 接続技術·材料

6-4-1 メカニカルクロージャ

6-4-2 融着接続機

6-4-3 融着接続機付属工具

6-4-4 光ファイバ識別機

6-4-5 コネクタ

6-4-6 現場組立型コネクタ

6-5 心線管理システム

6-6 保守·施工方法

6-6-1 概要

6-6-2 保守

6-6-3 施工方法

6-7 新しい用途

6-7-1 光ファイバ給電技術

6-7-2 光無線給電技術

6-7-3 光電波融合技術

6-7-4 光無線通信技術

第7章 今後の電力用光通信ネットワーク構成の考え方

7-1 電力用光通信ネットワークの更新周期

7-1-1 伝送装置の更新周期

7-1-2 光ケーブルの更新周期

7-1-3 電力用光通信ネットワークの更新周 期

7-2 自然災害に対する電力用光通信ネットワーク

7-3 保護リレーシステム回線への WDM 装置適 用

7-3-1 要求信頼度および不稼働率の設定

7-3-2 WDM 装置の適用検討

7-3-3 全体評価)

第8章 今後の課題と将来に向けた取り組み

8-1 今後の課題

8-1-1 系統保護回線

8-1-2 PDH 装置, SDH 装置の保守終息

8-1-3 非 IP 端末が存在する場合のネット ワーク構築方法

8-1-4 電力用光通信ネットワークの網同期

8-1-5 ネットワークセキュリティ

8-1-6 細径・高密度ケーブル

8-1-7 劣化診断技術

8-2 将来に向けた取り組み

8-2-1 Society5.0

8-2-2 Utility3.0

8-3 まとめ

あとがき

付録

付録1 用語定義

付録2 台数定義

付録3 回線構成の採用電力会社数の推移)

付録4 故障部位定義

付録 5 信頼度分析定義

付録6 光ケーブルの設備実態集計結果

付録7 光ケーブルの生物被害事例

付録8 光ケーブルの故障・支障移設実績集

計結果

付録9 MFD (Mode Field Diameter:モード フィールド径)の違いによる接続損失

計算例

付録10 ローカルディテクション方式

付録 11 OPGW 障害の発生プロセスと

1.24/1.625 μ m-OTDR による検出

付録 12 光ファイバ関連の代表的な JIS 規格

付録 13 JIS と国際規格相当表

付録 14 光ファイバ適用 IEC 規格

参考資料 略語集

電力用光通信ネットワークの実態と動向

委員会組織(敬称略)

(電力用光通信ネットワーク技術専門委員会)

委員長 中部電力㈱ 電力ネットワークカンパニー 宮 澤 久 永△ 電子通信部 技術グループ 中部電力(株) 電力ネットワークカンパニー 後藤洋志〇 電子通信部 システム・技術グループ 委 員 相田 仁 東京大学 工学系研究科 電気系工学専攻 (一財) 電力中央研究所 システム技術研究所 通信システム領域 下 充 史 宮 相 川 和 則△ 電気事業連合会 情報通信部 村 上 直 弘〇 電気事業連合会 情報通信部 宮 崎 和 則△ 北海道電力㈱ 送配電カンパニー 通信ネットワーク室 通信計画グループ 高橋宏明〇 北海道電力㈱ 送配電カンパニー 通信ネットワーク室 通信計画グループ 東北電力㈱ 電力ネットワーク本部 鎌 田 京 哉△ ネットワーク情報通信部(通信技術) 佐々木 雅 志△ 東北電力㈱ 送配電カンパニー ネットワーク情報通信部(通信技術) 東北電力㈱ 送配電カンパニー 昇〇 生田目 ネットワーク情報通信部(通信技術) 北陸電力㈱ 送配電事業本部 電力流通部 電子通信チーム 菊池俊行 山 本 雄 三 中国電力㈱ 送配電カンパニー 通信計画グループ 木綱 裕二△ 四国電力㈱ 送配電カンパニー 通信システム部 設備グループ 眞 鍋 圭 介○ 四国電力㈱ 送配電カンパニー 通信システム部 設備グループ 恒△ 沖縄電力㈱ 送配電本部 電力流通部 電力通信グループ 宜保 沖縄電力㈱ 送配電本部 電力流通部 電力通信グループ 普天間 直 紹〇 大塚彰男 電源開発㈱ デジタルイノベーション部 ネットワークシステムセンター(ネットワーク技術) 山下祐司 大井電気㈱ SE本部 井 上 秀 幸 日本電気㈱ スマートエネルギー事業部 五十嵐 公 一 富士通㈱ フォトニクスシステム事業本部 光ネットワーク事業部 国内ビジネス部

		el	
		瓜 生 良 宏	シスコシステムズ侗 公共・法人システムエンジニアリング
			戦略事業システムエンジニアリング
		多田佳史	ジュニパーネットワークス(株)
			エンタープライズビジネス第一統括本部
		久 保 隆 之	㈱フジクラ エネルギー・情報通信カンパニー
			光ケーブルシステム事業部 ソリューション営業技術部
			テレコム営業技術室
		長 尾 美 昭△	住友電気工業㈱ 光通信事業部 技術部 技術グループ
		五月女 裕 之〇	住友電気工業㈱ 光通信事業部 技術部
		小澤俊明	古河電気工業㈱ 情報通信ソリューション統括部門
			ファイバ・ケーブル事業部門 技術部 第2課
幹			東京電力パワーグリッド㈱電子通信部
	•	7,67	通信ネットワーク技術センター 通信ケーブル技術グループ
		新 田 征 邦△	東京電力パワーグリッド㈱電子通信部
		707	通信ネットワーク技術センター 通信ケーブル技術グループ
		菅 沼 伸 明〇	東京電力パワーグリッド㈱電子通信部
		₽ II IT 710	通信ネットワーク技術センター 通信ケーブル技術グループ
		伊 東 裕 二△	関西電力㈱ I T戦略室 通信技術グループ
		大牧弘幸〇	関西電力(株) 送配電カンパニー 系統運用部 通信グループ
			九州電力㈱ 送配電カンパニー
		今 村 弘△	
		流 汨 古 如 〇	通信・土木建築部 通信技術グループ
		渡 辺 直一郎○	九州電力㈱ 送配電カンパニー
			通信・土木建築部 通信技術グループ
		石 野 利 和	中部電力㈱電力ネットワークカンパニー
			電子通信部 システム・技術グループ
幹	事補	山 本 信 孝	中部電力㈱ 電力ネットワークカンパニー
			電子通信部 通信ネットワークセンター 設備管理課

注;△印は途中退任を示す、○印は途中就任を示す。

令和2年3月時点の社名・所属を示す(ただし、途中退任者は退任時の社名・所属を示す。)